Fungrim home page

Fungrim entry: 3b839c

sin ⁣(a+bi)=sin ⁣(a)cosh ⁣(b)+icos ⁣(a)sinh ⁣(b)\sin\!\left(a + b i\right) = \sin\!\left(a\right) \cosh\!\left(b\right) + i \cos\!\left(a\right) \sinh\!\left(b\right)
Assumptions:aCandbCa \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
\sin\!\left(a + b i\right) = \sin\!\left(a\right) \cosh\!\left(b\right) + i \cos\!\left(a\right) \sinh\!\left(b\right)

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
Fungrim symbol Notation Short description
Sinsin ⁣(z)\sin\!\left(z\right) Sine
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Sin(Add(a, Mul(b, ConstI))), Add(Mul(Sin(a), Cosh(b)), Mul(Mul(ConstI, Cos(a)), Sinh(b))))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-25 15:30:03.056001 UTC