Fungrim home page

Fungrim entry: 3a7a0b

λ ⁣(τ1τ)=λ ⁣(τ)1λ ⁣(τ)\lambda\!\left(\frac{\tau - 1}{\tau}\right) = \frac{\lambda\!\left(\tau\right) - 1}{\lambda\!\left(\tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\frac{\tau - 1}{\tau}\right) = \frac{\lambda\!\left(\tau\right) - 1}{\lambda\!\left(\tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("3a7a0b"),
    Formula(Equal(ModularLambda(Div(Sub(tau, 1), tau)), Div(Sub(ModularLambda(tau), 1), ModularLambda(tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 14:14:26.267625 UTC