Fungrim home page

Fungrim entry: 3a7a0b

λ ⁣(τ1τ)=λ(τ)1λ(τ)\lambda\!\left(\frac{\tau - 1}{\tau}\right) = \frac{\lambda(\tau) - 1}{\lambda(\tau)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\frac{\tau - 1}{\tau}\right) = \frac{\lambda(\tau) - 1}{\lambda(\tau)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("3a7a0b"),
    Formula(Equal(ModularLambda(Div(Sub(tau, 1), tau)), Div(Sub(ModularLambda(tau), 1), ModularLambda(tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-12-30 15:00:46.909060 UTC