Fungrim home page

Fungrim entry: 2f97f5

θ3 ⁣(z,τ)=n=qn2w2n   where q=eπiτ,  w=eπiz\theta_{3}\!\left(z , \tau\right) = \sum_{n=-\infty}^{\infty} {q}^{{n}^{2}} {w}^{2 n}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z}
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
\theta_{3}\!\left(z , \tau\right) = \sum_{n=-\infty}^{\infty} {q}^{{n}^{2}} {w}^{2 n}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(JacobiTheta(3, z, tau), Where(Sum(Mul(Pow(q, Pow(n, 2)), Pow(w, Mul(2, n))), For(n, Neg(Infinity), Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC