Fungrim home page

Fungrim entry: 2e1ff3

zerossRζ(s)={2n:nZ1}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{R}} \zeta(s) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\}
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{R}} \zeta(s) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
RiemannZetaζ(s)\zeta(s) Riemann zeta function
RRR\mathbb{R} Real numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(Zeros(RiemannZeta(s), ForElement(s, RR)), Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(1))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC