Fungrim home page

Fungrim entry: 2e1cc7

Table of Im ⁣(ρ10n)\operatorname{Im}\!\left(\rho_{{10}^{n}}\right) to 50 digits for 0n160 \le n \le 16
nn Im ⁣(ρ10n)  (nearest 50D)\operatorname{Im}\!\left(\rho_{{10}^{n}}\right) \; (\text{nearest } 50 \text{D})
014.134725141734693790457251983562470270784257115699
149.773832477672302181916784678563724057723178299677
2236.52422966581620580247550795566297868952949521219
31419.4224809459956864659890380799168192321006010642
49877.7826540055011427740990706901235776224680517811
574920.827498994186793849200946918346620223555216802
6600269.67701244495552123391427049074396819125790619
74992381.0140031786660182508391600932712387635814368
842653549.760951553903050309232819667982595130452178
9371870203.83702805273405479598662519100082698522485
103293531632.3971367042089917031338769677069644102625
1129538618431.613072810689561192671546108506486777642
12267653395648.62594824214264940920070899588029633790
132445999556030.2468813938032396773514175248139258741
1422514484222485.729124253904444090280880182979014905
15208514052006405.46942460229754774510609948399247941
161941393531395154.7112809113883108073327538053720311
Definitions:
Fungrim symbol Notation Short description
ImIm(z)\operatorname{Im}(z) Imaginary part
RiemannZetaZeroρn\rho_{n} Nontrivial zero of the Riemann zeta function
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("2e1cc7"),
    Description("Table of", Im(RiemannZetaZero(Pow(10, n))), "to 50 digits for", LessEqual(0, n, 16)),
    Table(Var(n), TableValueHeadings(n, NearestDecimal(Im(RiemannZetaZero(Pow(10, n))), 50)), TableSplit(1), List(Tuple(0, Decimal("14.134725141734693790457251983562470270784257115699")), Tuple(1, Decimal("49.773832477672302181916784678563724057723178299677")), Tuple(2, Decimal("236.52422966581620580247550795566297868952949521219")), Tuple(3, Decimal("1419.4224809459956864659890380799168192321006010642")), Tuple(4, Decimal("9877.7826540055011427740990706901235776224680517811")), Tuple(5, Decimal("74920.827498994186793849200946918346620223555216802")), Tuple(6, Decimal("600269.67701244495552123391427049074396819125790619")), Tuple(7, Decimal("4992381.0140031786660182508391600932712387635814368")), Tuple(8, Decimal("42653549.760951553903050309232819667982595130452178")), Tuple(9, Decimal("371870203.83702805273405479598662519100082698522485")), Tuple(10, Decimal("3293531632.3971367042089917031338769677069644102625")), Tuple(11, Decimal("29538618431.613072810689561192671546108506486777642")), Tuple(12, Decimal("267653395648.62594824214264940920070899588029633790")), Tuple(13, Decimal("2445999556030.2468813938032396773514175248139258741")), Tuple(14, Decimal("22514484222485.729124253904444090280880182979014905")), Tuple(15, Decimal("208514052006405.46942460229754774510609948399247941")), Tuple(16, Decimal("1941393531395154.7112809113883108073327538053720311")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC