Fungrim home page

Fungrim entry: 2ca869

F2n=(Fn+1+Fn1)FnF_{2 n} = \left(F_{n + 1} + F_{n - 1}\right) F_{n}
Assumptions:nZn \in \mathbb{Z}
TeX:
F_{2 n} = \left(F_{n + 1} + F_{n - 1}\right) F_{n}

n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
FibonacciFnF_{n} Fibonacci number
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("2ca869"),
    Formula(Equal(Fibonacci(Mul(2, n)), Mul(Add(Fibonacci(Add(n, 1)), Fibonacci(Sub(n, 1))), Fibonacci(n)))),
    Variables(n),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC