Fungrim home page

Fungrim entry: 2ba627

λ ⁣(11τ)=11λ ⁣(τ)\lambda\!\left(\frac{1}{1 - \tau}\right) = \frac{1}{1 - \lambda\!\left(\tau\right)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\frac{1}{1 - \tau}\right) = \frac{1}{1 - \lambda\!\left(\tau\right)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("2ba627"),
    Formula(Equal(ModularLambda(Div(1, Sub(1, tau))), Div(1, Sub(1, ModularLambda(tau))))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC