Assumptions:
TeX:
s\!\left(n, k\right) = \sum_{r=1}^{k - 1} \frac{r}{k} \left(\frac{n r}{k} - \left\lfloor \frac{n r}{k} \right\rfloor - \frac{1}{2}\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; k > 0 \;\mathbin{\operatorname{and}}\; \gcd\!\left(n, k\right) = 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DedekindSum | Dedekind sum | |
| Sum | Sum | |
| ZZ | Integers | |
| GCD | Greatest common divisor |
Source code for this entry:
Entry(ID("23961e"),
Formula(Equal(DedekindSum(n, k), Sum(Mul(Div(r, k), Sub(Sub(Div(Mul(n, r), k), Floor(Div(Mul(n, r), k))), Div(1, 2))), For(r, 1, Sub(k, 1))))),
Variables(n, k),
Assumptions(And(Element(n, ZZ), Element(k, ZZ), Greater(k, 0), Equal(GCD(n, k), 1))))