Fungrim home page

Fungrim entry: 2362af

(nk)=(nnk){n \choose k} = {n \choose n - k}
Assumptions:nZ0andk{0,1,n}n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots n\}
{n \choose k} = {n \choose n - k}

n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots n\}
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
ZZBetween{a,a+1,b}\{a, a + 1, \ldots b\} Integers between a and b inclusive
Source code for this entry:
    Formula(Equal(Binomial(n, k), Binomial(n, Sub(n, k)))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, ZZBetween(0, n)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC