Fungrim home page

Fungrim entry: 209fc8

(zk+1)=zkk+1(zk){z \choose k + 1} = \frac{z - k}{k + 1} {z \choose k}
Assumptions:zC  and  kZ0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
TeX:
{z \choose k + 1} = \frac{z - k}{k + 1} {z \choose k}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("209fc8"),
    Formula(Equal(Binomial(z, Add(k, 1)), Mul(Div(Sub(z, k), Add(k, 1)), Binomial(z, k)))),
    Variables(z, k),
    Assumptions(And(Element(z, CC), Element(k, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC