Fungrim home page

Fungrim entry: 1fbc09

θ34 ⁣(0,τ)=θ24 ⁣(0,τ)+θ44 ⁣(0,τ)\theta_{3}^{4}\!\left(0, \tau\right) = \theta_{2}^{4}\!\left(0, \tau\right) + \theta_{4}^{4}\!\left(0, \tau\right)
Assumptions:τH\tau \in \mathbb{H}
TeX:
\theta_{3}^{4}\!\left(0, \tau\right) = \theta_{2}^{4}\!\left(0, \tau\right) + \theta_{4}^{4}\!\left(0, \tau\right)

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("1fbc09"),
    Formula(Equal(Pow(JacobiTheta(3, 0, tau), 4), Add(Pow(JacobiTheta(2, 0, tau), 4), Pow(JacobiTheta(4, 0, tau), 4)))),
    Variables(tau),
    Assumptions(And(Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-20 18:07:53.062439 UTC