Fungrim home page

Fungrim entry: 1f0577

poleszC{~}[CAi ⁣(z)+DBi ⁣(z)]={}\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left[C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right] = \left\{\right\}
Assumptions:CC  and  DC  and  not(C=0  and  D=0)C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{not} \left(C = 0 \;\mathbin{\operatorname{and}}\; D = 0\right)
\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left[C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right] = \left\{\right\}

C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C} \;\mathbin{\operatorname{and}}\;  \operatorname{not} \left(C = 0 \;\mathbin{\operatorname{and}}\; D = 0\right)
Fungrim symbol Notation Short description
AiryAiAi ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
AiryBiBi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind
CCC\mathbb{C} Complex numbers
UnsignedInfinity~{\tilde \infty} Unsigned infinity
Source code for this entry:
    Formula(Equal(Poles(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), ForElement(z, Union(CC, Set(UnsignedInfinity)))), Set())),
    Variables(C, D),
    Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC