Fungrim home page

Fungrim entry: 1f0577

poleszC{~}(CAi ⁣(z)+DBi ⁣(z))={}\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right) = \left\{\right\}
Assumptions:CCandDCandnot(C=0andD=0)C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
TeX:
\mathop{\operatorname{poles}\,}\limits_{z \in \mathbb{C} \cup \left\{{\tilde \infty}\right\}} \left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right)\right) = \left\{\right\}

C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\,  \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
Definitions:
Fungrim symbol Notation Short description
AiryAiAi ⁣(z)\operatorname{Ai}\!\left(z\right) Airy function of the first kind
AiryBiBi ⁣(z)\operatorname{Bi}\!\left(z\right) Airy function of the second kind
CCC\mathbb{C} Complex numbers
UnsignedInfinity~{\tilde \infty} Unsigned infinity
Source code for this entry:
Entry(ID("1f0577"),
    Formula(Equal(Poles(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), ForElement(z, Union(CC, Set(UnsignedInfinity)))), Set())),
    Variables(C, D),
    Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC