Fungrim home page

Fungrim entry: 1dce21

Hν(2) ⁣(z)=Jν ⁣(z)iYν ⁣(z)H^{(2)}_{\nu}\!\left(z\right) = J_{\nu}\!\left(z\right) - i Y_{\nu}\!\left(z\right)
Assumptions:νCandzC{0}\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
H^{(2)}_{\nu}\!\left(z\right) = J_{\nu}\!\left(z\right) - i Y_{\nu}\!\left(z\right)

\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
HankelH2Hν(2) ⁣(z)H^{(2)}_{\nu}\!\left(z\right) Hankel function of the second kind
BesselJJν ⁣(z)J_{\nu}\!\left(z\right) Bessel function of the first kind
ConstIii Imaginary unit
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("1dce21"),
    Formula(Equal(HankelH2(nu, z), Sub(BesselJ(nu, z), Mul(ConstI, BesselY(nu, z))))),
    Variables(nu, z),
    Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC