Fungrim home page

Fungrim entry: 1d3fd7

ddyatan2 ⁣(y,x)=xx2+y2\frac{d}{d y}\, \operatorname{atan2}\!\left(y, x\right) = \frac{x}{{x}^{2} + {y}^{2}}
Assumptions:xRandyRand(x>0ory0)x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, \left(x > 0 \,\mathbin{\operatorname{or}}\, y \ne 0\right)
\frac{d}{d y}\, \operatorname{atan2}\!\left(y, x\right) = \frac{x}{{x}^{2} + {y}^{2}}

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R} \,\mathbin{\operatorname{and}}\, \left(x > 0 \,\mathbin{\operatorname{or}}\, y \ne 0\right)
Fungrim symbol Notation Short description
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
Atan2atan2 ⁣(y,x)\operatorname{atan2}\!\left(y, x\right) Two-argument inverse tangent
Powab{a}^{b} Power
RRR\mathbb{R} Real numbers
Source code for this entry:
    Formula(Equal(Derivative(Atan2(y, x), Tuple(y, y, 1)), Div(x, Add(Pow(x, 2), Pow(y, 2))))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR), Or(Greater(x, 0), Unequal(y, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-19 20:12:49.583742 UTC