Fungrim home page

Fungrim entry: 192a3e

F,η ⁣(z)=H,η+ ⁣(z)H,η ⁣(z)2iF_{\ell,\eta}\!\left(z\right) = \frac{H^{+}_{\ell,\eta}\!\left(z\right) - H^{-}_{\ell,\eta}\!\left(z\right)}{2 i}
Assumptions:CandηCand(1++iη{0,1,}and1+iη{0,1,})andzC{0}\ell \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \eta \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
F_{\ell,\eta}\!\left(z\right) = \frac{H^{+}_{\ell,\eta}\!\left(z\right) - H^{-}_{\ell,\eta}\!\left(z\right)}{2 i}

\ell \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \eta \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
CoulombFF,η ⁣(z)F_{\ell,\eta}\!\left(z\right) Regular Coulomb wave function
CoulombHH,ηω ⁣(z)H^{\omega}_{\ell,\eta}\!\left(z\right) Outgoing and ingoing Coulomb wave function
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
Source code for this entry:
Entry(ID("192a3e"),
    Formula(Equal(CoulombF(ell, eta, z), Div(Sub(CoulombH(1, ell, eta, z), CoulombH(-1, ell, eta, z)), Mul(2, ConstI)))),
    Variables(ell, eta, z),
    Assumptions(And(Element(ell, CC), Element(eta, CC), And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC