Fungrim home page

Fungrim entry: 185efc

zcz=z1cz\sqrt{\frac{z}{c - z}} = \sqrt{z} \sqrt{\frac{1}{c - z}}
Assumptions:zCandc[0,)andcz0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, c - z \ne 0
TeX:
\sqrt{\frac{z}{c - z}} = \sqrt{z} \sqrt{\frac{1}{c - z}}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, c - z \ne 0
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("185efc"),
    Formula(Equal(Sqrt(Div(z, Sub(c, z))), Mul(Sqrt(z), Sqrt(Div(1, Sub(c, z)))))),
    Variables(z, c),
    Assumptions(And(Element(z, CC), Element(c, ClosedOpenInterval(0, Infinity)), Unequal(Sub(c, z), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC