Fungrim home page

Fungrim entry: 1842d9

θ4(r) ⁣(z,τ)=(2πi)rn=(1)nnrqn2w2n   where q=eπiτ,w=eπiz\theta^{(r)}_{4}\!\left(z , \tau\right) = {\left(2 \pi i\right)}^{r} \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {n}^{r} {q}^{{n}^{2}} {w}^{2 n}\; \text{ where } q = {e}^{\pi i \tau},\,w = {e}^{\pi i z}
Assumptions:zCandτHandrZ0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
TeX:
\theta^{(r)}_{4}\!\left(z , \tau\right) = {\left(2 \pi i\right)}^{r} \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {n}^{r} {q}^{{n}^{2}} {w}^{2 n}\; \text{ where } q = {e}^{\pi i \tau},\,w = {e}^{\pi i z}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Powab{a}^{b} Power
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Sumnf ⁣(n)\sum_{n} f\!\left(n\right) Sum
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("1842d9"),
    Formula(Equal(JacobiTheta(4, z, tau, r), Where(Mul(Pow(Mul(Mul(2, ConstPi), ConstI), r), Sum(Mul(Mul(Mul(Pow(-1, n), Pow(n, r)), Pow(q, Pow(n, 2))), Pow(w, Mul(2, n))), Tuple(n, Neg(Infinity), Infinity))), Equal(q, Exp(Mul(Mul(ConstPi, ConstI), tau))), Equal(w, Exp(Mul(Mul(ConstPi, ConstI), z)))))),
    Variables(z, tau, r),
    Assumptions(And(Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-20 18:07:53.062439 UTC