Fungrim home page

Fungrim entry: 177218

Table of g(n)g(n) for 0n1000 \le n \le 100
nn g(n)g(n)
01
11
22
33
44
56
66
712
815
920
1030
1130
1260
1360
1484
15105
16140
17210
18210
19420
20420
21420
22420
23840
24840
nn g(n)g(n)
251260
261260
271540
282310
292520
304620
314620
325460
335460
349240
359240
3613860
3713860
3816380
3916380
4027720
4130030
4232760
4360060
4460060
4560060
4660060
47120120
48120120
49180180
nn g(n)g(n)
50180180
51180180
52180180
53360360
54360360
55360360
56360360
57471240
58510510
59556920
601021020
611021020
621141140
631141140
642042040
652042040
663063060
673063060
683423420
693423420
706126120
716126120
726846840
736846840
746846840
nn g(n)g(n)
756846840
768953560
779699690
7812252240
7919399380
8019399380
8119399380
8219399380
8338798760
8438798760
8558198140
8658198140
8758198140
8858198140
89116396280
90116396280
91116396280
92116396280
93140900760
94140900760
95157477320
96157477320
97232792560
98232792560
99232792560
100232792560
Definitions:
Fungrim symbol Notation Short description
LandauGg(n)g(n) Landau's function
Source code for this entry:
Entry(ID("177218"),
    Description("Table of", LandauG(n), "for", LessEqual(0, n, 100)),
    Table(Var(n), TableValueHeadings(n, LandauG(n)), TableSplit(4), List(Tuple(0, 1), Tuple(1, 1), Tuple(2, 2), Tuple(3, 3), Tuple(4, 4), Tuple(5, 6), Tuple(6, 6), Tuple(7, 12), Tuple(8, 15), Tuple(9, 20), Tuple(10, 30), Tuple(11, 30), Tuple(12, 60), Tuple(13, 60), Tuple(14, 84), Tuple(15, 105), Tuple(16, 140), Tuple(17, 210), Tuple(18, 210), Tuple(19, 420), Tuple(20, 420), Tuple(21, 420), Tuple(22, 420), Tuple(23, 840), Tuple(24, 840), Tuple(25, 1260), Tuple(26, 1260), Tuple(27, 1540), Tuple(28, 2310), Tuple(29, 2520), Tuple(30, 4620), Tuple(31, 4620), Tuple(32, 5460), Tuple(33, 5460), Tuple(34, 9240), Tuple(35, 9240), Tuple(36, 13860), Tuple(37, 13860), Tuple(38, 16380), Tuple(39, 16380), Tuple(40, 27720), Tuple(41, 30030), Tuple(42, 32760), Tuple(43, 60060), Tuple(44, 60060), Tuple(45, 60060), Tuple(46, 60060), Tuple(47, 120120), Tuple(48, 120120), Tuple(49, 180180), Tuple(50, 180180), Tuple(51, 180180), Tuple(52, 180180), Tuple(53, 360360), Tuple(54, 360360), Tuple(55, 360360), Tuple(56, 360360), Tuple(57, 471240), Tuple(58, 510510), Tuple(59, 556920), Tuple(60, 1021020), Tuple(61, 1021020), Tuple(62, 1141140), Tuple(63, 1141140), Tuple(64, 2042040), Tuple(65, 2042040), Tuple(66, 3063060), Tuple(67, 3063060), Tuple(68, 3423420), Tuple(69, 3423420), Tuple(70, 6126120), Tuple(71, 6126120), Tuple(72, 6846840), Tuple(73, 6846840), Tuple(74, 6846840), Tuple(75, 6846840), Tuple(76, 8953560), Tuple(77, 9699690), Tuple(78, 12252240), Tuple(79, 19399380), Tuple(80, 19399380), Tuple(81, 19399380), Tuple(82, 19399380), Tuple(83, 38798760), Tuple(84, 38798760), Tuple(85, 58198140), Tuple(86, 58198140), Tuple(87, 58198140), Tuple(88, 58198140), Tuple(89, 116396280), Tuple(90, 116396280), Tuple(91, 116396280), Tuple(92, 116396280), Tuple(93, 140900760), Tuple(94, 140900760), Tuple(95, 157477320), Tuple(96, 157477320), Tuple(97, 232792560), Tuple(98, 232792560), Tuple(99, 232792560), Tuple(100, 232792560))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC