Fungrim home page

Fungrim entry: 15b347

E2k ⁣(τ)=14kB2kn=1m=1n2k1qmn   where q=e2πiτE_{2 k}\!\left(\tau\right) = 1 - \frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} {n}^{2 k - 1} {q}^{m n}\; \text{ where } q = {e}^{2 \pi i \tau}
Assumptions:kZ1  and  τHk \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
E_{2 k}\!\left(\tau\right) = 1 - \frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} {n}^{2 k - 1} {q}^{m n}\; \text{ where } q = {e}^{2 \pi i \tau}

k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
BernoulliBBnB_{n} Bernoulli number
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(EisensteinE(Mul(2, k), tau), Where(Sub(1, Mul(Div(Mul(4, k), BernoulliB(Mul(2, k))), Sum(Sum(Mul(Pow(n, Sub(Mul(2, k), 1)), Pow(q, Mul(m, n))), For(m, 1, Infinity)), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Mul(2, Pi), ConstI), tau)))))),
    Variables(k, tau),
    Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC