Fungrim home page

Fungrim entry: 0d3b91

W0 ⁣(z) is holomorphic on zC(,e1]W_{0}\!\left(z\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, -{e}^{-1}\right]
W_{0}\!\left(z\right) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, -{e}^{-1}\right]
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
Source code for this entry:
    Formula(IsHolomorphic(LambertW(0, z), ForElement(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), Neg(Exp(-1))))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC