Assumptions:
TeX:
T_{n}\!\left(x\right) = \frac{1}{2} \left({\left(x + \sqrt{{x}^{2} - 1}\right)}^{n} + {\left(x - \sqrt{{x}^{2} - 1}\right)}^{n}\right)
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| Sqrt | Principal square root | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("0cbe75"),
Formula(Equal(ChebyshevT(n, x), Mul(Div(1, 2), Add(Pow(Add(x, Sqrt(Sub(Pow(x, 2), 1))), n), Pow(Sub(x, Sqrt(Sub(Pow(x, 2), 1))), n))))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))