Fungrim home page

Fungrim entry: 0ba9b2

log(z)=1z1tdt\log(z) = \int_{1}^{z} \frac{1}{t} \, dt
Assumptions:zC(,0]z \in \mathbb{C} \setminus \left(-\infty, 0\right]
TeX:
\log(z) = \int_{1}^{z} \frac{1}{t} \, dt

z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
Loglog(z)\log(z) Natural logarithm
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("0ba9b2"),
    Formula(Equal(Log(z), Integral(Div(1, t), For(t, 1, z)))),
    Variables(z),
    Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-12-30 15:00:46.909060 UTC