Fungrim home page

Fungrim entry: 0ba38f

#Gqprimitive=dqφ ⁣(d)μ ⁣(qd)\# G_{q}^{\text{primitive}} = \sum_{d \mid q} \varphi\!\left(d\right) \mu\!\left(\frac{q}{d}\right)
Assumptions:qZ1q \in \mathbb{Z}_{\ge 1}
References:
  • http://oeis.org/A007431
TeX:
\# G_{q}^{\text{primitive}} = \sum_{d \mid q} \varphi\!\left(d\right) \mu\!\left(\frac{q}{d}\right)

q \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
Cardinality#S\# S Set cardinality
PrimitiveDirichletCharactersGqprimitiveG_{q}^{\text{primitive}} Primitive Dirichlet characters with given modulus
DivisorSumknf ⁣(k)\sum_{k \mid n} f\!\left(k\right) Sum over divisors
Totientφ ⁣(n)\varphi\!\left(n\right) Euler totient function
MoebiusMuμ ⁣(n)\mu\!\left(n\right) Möbius function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("0ba38f"),
    Formula(Equal(Cardinality(PrimitiveDirichletCharacters(q)), DivisorSum(Mul(Totient(d), MoebiusMu(Div(q, d))), d, q))),
    Variables(q),
    Assumptions(Element(q, ZZGreaterEqual(1))),
    References("http://oeis.org/A007431"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC