Fungrim home page

Fungrim entry: 08bd37

z=iz\sqrt{-z} = -i \sqrt{z}
Assumptions:z(,0]  or  (zC  and  Im(z)>0)z \in \left(-\infty, 0\right] \;\mathbin{\operatorname{or}}\; \left(z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Im}(z) > 0\right)
\sqrt{-z} = -i \sqrt{z}

z \in \left(-\infty, 0\right] \;\mathbin{\operatorname{or}}\; \left(z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Im}(z) > 0\right)
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
ConstIii Imaginary unit
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ImIm(z)\operatorname{Im}(z) Imaginary part
Source code for this entry:
    Formula(Equal(Sqrt(Neg(z)), Mul(Neg(ConstI), Sqrt(z)))),
    Assumptions(Or(Element(z, OpenClosedInterval(Neg(Infinity), 0)), And(Element(z, CC), Greater(Im(z), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC