Fungrim home page

Fungrim entry: 081188

(z+1k+1)=(zk)+(zk+1){z + 1 \choose k + 1} = {z \choose k} + {z \choose k + 1}
Assumptions:zCandk{0,1,,n}z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots, n\}
TeX:
{z + 1 \choose k + 1} = {z \choose k} + {z \choose k + 1}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, k \in \{0, 1, \ldots, n\}
Definitions:
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
CCC\mathbb{C} Complex numbers
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
Source code for this entry:
Entry(ID("081188"),
    Formula(Equal(Binomial(Add(z, 1), Add(k, 1)), Add(Binomial(z, k), Binomial(z, Add(k, 1))))),
    Variables(z, k),
    Assumptions(And(Element(z, CC), Element(k, Range(0, n)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC