Fungrim home page

Fungrim entry: 07bf27

λ ⁣(1τ)=1λ ⁣(τ)\lambda\!\left(-\frac{1}{\tau}\right) = 1 - \lambda\!\left(\tau\right)
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(-\frac{1}{\tau}\right) = 1 - \lambda\!\left(\tau\right)

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("07bf27"),
    Formula(Equal(ModularLambda(Neg(Div(1, tau))), Sub(1, ModularLambda(tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC