Fungrim home page

Fungrim entry: 04f4a0

polesτH{~}η(τ)={}\mathop{\operatorname{poles}\,}\limits_{\tau \in \mathbb{H} \cup \left\{{\tilde \infty}\right\}} \eta(\tau) = \left\{\right\}
TeX:
\mathop{\operatorname{poles}\,}\limits_{\tau \in \mathbb{H} \cup \left\{{\tilde \infty}\right\}} \eta(\tau) = \left\{\right\}
Definitions:
Fungrim symbol Notation Short description
DedekindEtaη(τ)\eta(\tau) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
UnsignedInfinity~{\tilde \infty} Unsigned infinity
Source code for this entry:
Entry(ID("04f4a0"),
    Formula(Equal(Poles(DedekindEta(tau), ForElement(tau, Union(HH, Set(UnsignedInfinity)))), Set())))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC