Fungrim entry: 0479f5

$\pi = 72 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{\pi n} - 1\right)} - 96 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{2 \pi n} - 1\right)} + 24 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{4 \pi n} - 1\right)}$
References:
• http://www.lacim.uqam.ca/~plouffe/inspired2.pdf
TeX:
\pi = 72 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{\pi n} - 1\right)} - 96 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{2 \pi n} - 1\right)} + 24 \sum_{n=1}^{\infty} \frac{1}{n \left({e}^{4 \pi n} - 1\right)}
Definitions:
Fungrim symbol Notation Short description
Pi$\pi$ The constant pi (3.14...)
Sum$\sum_{n} f(n)$ Sum
Exp${e}^{z}$ Exponential function
Infinity$\infty$ Positive infinity
Source code for this entry:
Entry(ID("0479f5"),
Formula(Equal(Pi, Add(Sub(Mul(72, Sum(Div(1, Mul(n, Sub(Exp(Mul(Pi, n)), 1))), For(n, 1, Infinity))), Mul(96, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(2, Pi), n)), 1))), For(n, 1, Infinity)))), Mul(24, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(4, Pi), n)), 1))), For(n, 1, Infinity)))))),
References("http://www.lacim.uqam.ca/~plouffe/inspired2.pdf"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC