Assumptions:
References:
- G. H. Hardy and E. M. Wright (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford University Press. Theorem 327.
TeX:
\varphi(n) \sigma_{1}\!\left(n\right) > \frac{6}{{\pi}^{2}} {n}^{2}
n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Totient | Euler totient function | |
| DivisorSigma | Sum of divisors function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("0477b3"),
Formula(Greater(Mul(Totient(n), DivisorSigma(1, n)), Mul(Div(6, Pow(Pi, 2)), Pow(n, 2)))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(1))),
References("G. H. Hardy and E. M. Wright (1979), An Introduction to the Theory of Numbers (Fifth ed.), Oxford University Press. Theorem 327."))