Fungrim home page

Fungrim entry: 037342

logG(z) is holomorphic on zC(,0]\log G(z) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, 0\right]
TeX:
\log G(z) \text{ is holomorphic on } z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
LogBarnesGlogG(z)\log G(z) Logarithmic Barnes G-function
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("037342"),
    Formula(IsHolomorphic(LogBarnesG(z), ForElement(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))),
    Variables(z))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC