Fungrim home page

Fungrim entry: 033d39

1λ ⁣(τ)=116η8 ⁣(τ2)η8 ⁣(2τ)+1\frac{1}{\lambda\!\left(\tau\right)} = \frac{1}{16} \frac{\eta^{8}\!\left(\frac{\tau}{2}\right)}{\eta^{8}\!\left(2 \tau\right)} + 1
Assumptions:τH\tau \in \mathbb{H}
TeX:
\frac{1}{\lambda\!\left(\tau\right)} = \frac{1}{16} \frac{\eta^{8}\!\left(\frac{\tau}{2}\right)}{\eta^{8}\!\left(2 \tau\right)} + 1

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
Powab{a}^{b} Power
DedekindEtaη ⁣(τ)\eta\!\left(\tau\right) Dedekind eta function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("033d39"),
    Formula(Equal(Div(1, ModularLambda(tau)), Add(Mul(Div(1, 16), Div(Pow(DedekindEta(Div(tau, 2)), 8), Pow(DedekindEta(Mul(2, tau)), 8))), 1))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC